
1

MIDAS: Safeguarding IoT Devices Against Malware
via Real-Time Behavior Auditing

Yiwen Xu†, Zijing Yin†, Yiwei Hou, Jianzhong Liu, Yu Jiang∗

Tsinghua University, Beijing, China

Abstract—The number of IoT devices on the Internet has
surged recently, accompanied by a barrage of large-scale IoT
malware infections breakouts. Designing security mechanisms for
IoT devices poses significant challenges due to constantly chang-
ing malware variants that have numerous camouflage strategies,
limited hardware resources and heterogeneous architectures. In
this paper, we propose MIDAS, an adaptive safeguard framework
for Linux-based IoT devices to defend against malwares with
the real-time behavior auditing mechanism. First, we construct
a stable and abstract behavior paradigm through behavioral
characteristic extraction of 115,970 malwares. Then, based on
the behavior paradigm, MIDAS can 1) monitor suspicious be-
haviors of break-in programs in real-time driven by our built-in
SELinux policy customized for malware defense, 2) aggregate
behaviors of the program’s submodules with homology tracing
and 3) summarize these behaviors into abstract behavior pairs
to unveil a possible IoT malware. Using the aforementioned
real-time behavior auditing, MIDAS can constrain mutating and
camouflaged malwares to protect discrepant IoT devices from
being compromised while maintaining low overheads.

We thoroughly evaluated the defense capabilities of MIDAS.
On the benchmark dataset, MIDAS successfully constrained up
to 94.46%, 91.79% and 88.34% of 115,970 malware samples on
ARM, MIPS and MIPSEL architectures, with less than 1.8MiB
of memory consumption and 0.54% CPU usage. Furthermore,
we deployed virtual IoT devices worldwide to examine the per-
formance of MIDAS when defending against real-world attacks.
Over a duration of 25 days, these devices suffered from 971,951
attacks originating from 71,979 intruding malwares and 48,805
unique IPs distributed in 167 countries. For devices with MIDAS
protection, the number of compromised incidents decreases by
343.1×, and the duration of continuous operation is 179.2×
greater than devices without MIDAS on average. The evaluation
results demonstrate that MIDAS can effectively safeguard IoT
devices with minimal resource consumption.

Index Terms—IoT Malware, Embedded Firmware, Adaptive
Safeguard, Behavior Auditing.

I. INTRODUCTION

Internet of Things devices, or IoT devices, refer to billions
of Internet-connected devices. Many of these devices run

∗Yu Jiang is the corresponding author.
†Yiwen Xu and Zijing Yin contributed equally to this research.
Y. Xu, Z. Yin, Y. Hou, Jianzhong Liu and Y. Jiang are with the

School of Software, Tsinghua University, Beijing 100084, China (e-mail:
xuywen14@gmail.com, aurora@europe.com, houyiweiyw@gmail.com, li-
ujz21@mails.tsinghua.edu.cn, jiangyu198964@126.com).

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented at the International Conference on
Embedded Software (EMSOFT) 2022 and appeared as part of the ESWEEK-
TCAD special issue.

This research is sponsored in part by the NSFC Program (No. 62022046,
92167101, U1911401, 62021002, 62192730), National Key Research and De-
velopment Project (No. 2019YFB1706203, 2021QY0604) and MIIT Project-
(Design of intelligent networked vehicle based on SOA central control.

Linux [1], and are power-limited, cost-constrained, and het-
erogeneous without any protection against IoT malwares [2].
The typical lifecycle of IoT malware is composed of four
parts: Infection, Reconnaissance, Persistence and Impacts.
After infection from common entry points, IoT malwares first
gather device’s information for reconnaissance. Then they will
maintain their foothold on the device for persistence and fur-
ther achieve impacts for malicious goals. Nowadays, numerous
IoT malware families like Mirai support multiple architectures,
iterate variants constantly and infect more than 10K devices a
day [3]. Such a rising security threat illustrates the necessity of
a safeguard mechanism for IoT devices. Recent studies have
also concluded that immediate security efforts are required to
defend against IoT malware breakouts [4].

In recent research, malware mitigation frameworks based on
static and dynamic features have achieved good performance
in traditional domains. Among them, static signature-based
approaches [5] [6] extract patterns like bytecode or API calls
from malware samples. Yet, these approaches are susceptible
to evasion techniques, like obfuscation [7], and are constrained
by the limited IoT device’s storage for patterns. In contrast,
current dynamic analysis methods [8] [9] can be more accurate
by identifying the malware via runtime information. However,
the required hardware resources are too heavy for IoT devices.

To safeguard IoT devices against malwares effectively, we
encounter the following challenges. First, IoT malwares mu-
tate rapidly based on their original binaries. Without analyzing
the programs’ behavioral semantics, patterns developed for
specific samples, such as YARA, can be easily bypassed by
subsequent variants with obfuscation or code polymorphism.
Thus, how to extract typical and stable behavioral character-
istics of IoT malwares poses significant challenges.

Second, IoT malwares often apply various camouflage meth-
ods like self-replication to decentralize malicious intentions
into different submodules. Insufficient malware tracing makes
existing security methods difficult to provide a complete view
of malware’ behaviors throughout their lifecycle, reducing the
protection’s effectiveness. How to comprehensively analyze
homologous relations under various camouflage strategies of
the intruding malware is an obstacle to tackle.

Finally, most IoT devices have constrained hardware re-
sources and heterogeneous architectures. Current on-device
safeguard approaches require considerable storage or com-
putational resources for real-time analysis, which exhibits
heavy overheads. Meanwhile, existing approaches lack support
for heterogeneous devices and are highly coupled with the
target architectures. How to implement a lightweight safeguard

2

framework compatible with devices of different architectures
needs to be adequately addressed.

To address these challenges, we propose MIDAS, an adap-
tive safeguard framework to defend Linux-based IoT devices
against malwares. We systematically analyze 115,970 IoT
malwares over 28 families to acquire their sensitive behaviors.
IoT malwares’ behaviors access various system resources that
can be categorized by their security sensitivity. Security sensi-
tivity indicates the level of permissions to access some given
resource, i.e., the operations allowed for certain programs to
perform on the given resource. Resources with similar security
sensitivities generally have similar functionalities. This allows
us to abstract behaviors of malwares through using security-
sensitivity-based resource categories (represented as security
context), as the security sensitivity of the accessed resources
of a malware’s given intentions remain relatively constant
and can be carried across variants. Thus, malwares’ behaviors
can be abstracted into pairs consisting of security contexts
and behavior classes, which are then mapped to stages of
typical IoT malware lifecycle. Such a behavioral characteristic
extraction process can construct a robust and stable behavior
paradigm applicable to mutating IoT malwares.

The paradigm portrays the suspicious behaviors throughout
the entire lifecycle of IoT malwares. With this behavior
paradigm, we can perform real-time behavior auditing on
break-in programs to safeguard IoT devices. Firstly, based
on a built-in customized malware defense policy, suspicious
behaviors of the intruding program can be recorded as AVC
messages by the SELinux kernel module with low runtime
costs, allowing MIDAS to automatically monitor these opera-
tions in real-time cheaply. Such an architecture-agnostic pro-
cedure also makes MIDAS compatible with heterogeneous IoT
devices. Secondly, homology tracing is designed to aggregate
operations scattered among multiple submodules of the break-
in program to fully depict its activities with various disguises.
In this way, operations derived from homologous processes
of the program will be traced as a behavior message sequence
and summarized into abstract behavior pairs. Finally, if MIDAS
can assemble abstract pairs to unveil a complete IoT malware
lifecycle, the malicious attempts will be blocked and the break-
in program will be constrained from violating the system.

We implemented and evaluated the performance of MIDAS
on both multi-source benchmark malwares and real-world
attack scenarios. Specifically, on the benchmark dataset, MI-
DAS successfully withstood and constrained up to 94.46%,
91.79%, 88.34% malwares on ARM, MIPS, and MIPSEL
architectures respectively, with less than 1.8MiB of memory
and 0.54% CPU. Furthermore, we deployed virtual IoT devices
with different architectures to public networks in ten countries
to examine the performance of MIDAS against current real-
world attacks. Half of the devices were protected with MIDAS,
while the other half were not. Suffering from a total of
71,979 intruding malwares and 971,951 attacks (i.e. login
sessions) originating from 167 countries, devices without
MIDAS became compromised 11,323 times in total, while
devices safeguarded by MIDAS were compromised 33 times
only due to connectivity loss by external DDoS attacks. In
summary, with MIDAS, the number of compromised incidents

decreases by 343.1× and the duration of continuous operation
increases by 179.2× than devices without MIDAS. This fully
demonstrates that MIDAS can effectively protect IoT devices
with heterogeneous architectures at low run-time costs.

Our contributions are summarized as follows:
• We propose an adaptive and efficient safeguard frame-

work for IoT devices based on real-time behavior au-
diting mechanism. Such a methodology can be applied
to heterogeneous IoT devices to defend against mutating
malwares under various camouflages with low overheads.

• After constructing the behavior paradigm by the behav-
ioral characteristic extraction of 115,970 IoT malwares,
we implement MIDAS1 to monitor suspicious operations,
trace homologous processes, and summarize the abstract
behaviors of break-in programs to identify possible mal-
wares based on the extracted paradigm.

• We evaluated MIDAS on benchmark and real-world attack
scenarios. Results show that MIDAS defended up to
94.46% of benchmark samples, with less than 1.8MiB
of memory and 0.54% CPU usage. Meanwhile, in 25-
day online experiments, devices suffered from 971,951
attacks, and MIDAS-protected devices are 343.1× less to
be compromised than ones without MIDAS.

II. BACKGROUND

SELinux is an access control module in the Linux kernel.
It supports fine-grained behavior auditing. It is an imple-
mentation of Flux Advanced Security Kernel (FLASK), a
methodology that uses loadable policy to achieve flexible
security protection. The policy loaded in SELinux is called
SELinux Policy. It specifies what kind of behaviors or resource
accesses need to be audited.

A typical policy consists of three aspects: labeling, transi-
tion and rules. (1) Labeling indicates system resource clas-
sification. Each system resource, including files, networks,
processes, system capabilities, etc., can be categorized based
on its functionalities. Resources with the same access permis-
sions will be labeled with the same security contexts. With
the labelling procedure, system resources originally embedded
in the firmware are allocated with security contexts. (2) The
security contexts of newly generated resources (e.g., output
files of programs), on the other hand, are determined based
on transition in the policy, implemented with type transition
statements. They can specify what security context will be
labeled to new resources generated from existing programs.
Through these two mechanisms, the security context of each
system resource, including both existing resources and newly
generated resources can be explicitly assigned. The resources
with the same security context will be applied with the
same rules. (3) Each rule in the policy can designate a set
of behaviors that need to be audited. We focus on three
items when designing a rule: security context of the resource
requester (i.e., source security context, referred to as scontext),
security context of the requested resource (i.e, target security
context, referred to as tcontext) and the type of the operation

1The prototype of MIDAS, the malware dataset and supplementary materials
are available at https://anonymous.4open.science/r/MidasDefense-6F7C

https://anonymous.4open.science/r/MidasDefense-6F7C

3

(e.g, read, write, etc., referred to as behavior class). Each
rule can trigger the SELinux module to audit the behaviors
of the behavior class, performed by processes with scontext
to resources with tcontext.

{ add name } for pid=1871 comm="cat" name="S99jcfk"

scontext=u:r: suspicious.subj tcontext=u:r: file.initscriptfile tclass=dir

Listing 1: Example of an AVC message. This message is
generated when the break-in process of HideNSeek malware,
labeled with suspicious.subj, duplicates itself as S99jcfk to
/etc/rc.d for persistence.

SELinux module utilizes Access Vector Cache (AVC) that
automatically cache recent audit decisions of operations to
reduce overhead. The audited behaviors will be recorded
as AVC messages. Each message contains behavior class,
scontext, tcontext and other information. As shown in List-
ing 1 with highlight items, this AVC message records an
add name behavior (file creation in a directory) performed by
suspicious.subj type of process to file.initscriptfile type of file
resource (i.e., system initialization directories like /etc/rc.d).

III. MIDAS DESIGN

In this section, we introduce MIDAS’ methodology, which
consists of behavioral characteristic extraction and real-time
behavior auditing. The overall process is shown in Figure 1.

Behavior Paradigm

Behavioral Characteristic Extraction

Intruding
Programs

Constrain

Real-Time Behavior Auditing

Policy-driven
Behavior Monitoring

Homology Tracing

AVC
Messages

Behavior
Message
Sequence

Behavior Identification

Check Indicators

Sensitive
Behavior

Acquisition

Malware Defense
SELinux Policy Aggregate

Behavior Trace

 Summarize
Abstract Behaviors

Unveil
Malware Lifecycle

Malware
Samples

Paradigm Distillation

Behavior
Abstraction

Behavior Intention
Analysis

Abstract
Behaviors

Lifecycle
Mappings

Concrete
Behaviors

Fig. 1: MIDAS Overview. With Behavioral Characteristic Ex-
traction, malwares’ operations can be analyzed and abstracted
to form a typical behavior paradigm. Utilizing this paradigm,
Real-Time Behavior Auditing monitors intruding programs’
suspicious behaviors, aggregate the behaviors conducted by
homologous processes to a behavior message sequence and
summarize them into abstract behavior pairs to unveil possible
malware lifecycle and constrain malicious programs.

To construct the behavior paradigm of malwares, we use a
behavioral characteristic extraction process. Through analyz-
ing 115,970 samples, we acquire a series of sensitive behav-
iors conducted by IoT malwares. We abstract these concrete
behaviors into pairs of security contexts and behavior classes.
Then the intentions of these behaviors will be analyzed and
further mapped to the IoT malware lifecycle. Such hierarchical
abstraction can distill a general and robust paradigm that
represents the correspondence from concrete operations to
abstract behavior pairs and then the stages of IoT malware
lifecycle, applicable to even the lastest variants.

Based on this paradigm, we design a real-time behavior
auditing mechanism to defend against IoT malwares. Specif-
ically, driven by the SELinux policy customized for malware
defense, MIDAS monitors break-in programs’ behaviors as
AVC messages in real-time with low runtime costs. Then, MI-
DAS uses homology tracing to aggregate malicious behaviors
of the camouflaged malware’s submodules to form a behavior
message sequence. Based on the obtained sequence, MIDAS
summarizes operations into abstract behavior pairs. Finally, by
assembling the pairs into stages of malware lifecycle according
to the mappings in the paradigm, MIDAS can identify mali-
cious programs and constrain them from violating the system.

A. Behavioral Characteristic Extraction

We now illustrate the behavioral characteristic extraction
procedure. It acquires sensitive concrete behaviors of IoT
malwares and converts them into abstract behaviors which are
then mapped to the malware lifecycle, constructing a stable
behavior paradigm. Such a paradigm contributes to a more
robust defense against variants in the further behavior auditing.

Data Source. We gather a total of 115,970 IoT malware
samples from multiple sources to ensure diversity. The first
part of the samples is collected from VirusTotal [10], which
represents variants currently under study for its wide use by
researchers. The second part comes from malwares captured
by online honeypots deployed for up to three years [11], show-
ing recently widespread variants. The remaining part contains
samples of various underground repositories [12] [13] [4].
They have not received sufficient attentions from the academic
community, which further increases the generalizability of our
datasets. We de-duplicate all samples based on hash values,
and then label each one with VirusTotal and AVClass [14].

Sensitive Behavior Acquisition. To acquire concrete be-
haviors of IoT malwares, we refer to the surveys of Cozzi et
al. [15], Alrawi et al. [4] and Rieck et al. [16], which have
been proven to be systematic and effective. We tailor these
existing malware analysis methods for our sensitive behavior
acquisition, especially the static, dynamic and capability differ-
ential analysis, to collect concrete behaviors of IoT malwares
in our dataset. Based on these methods after customization,
we can gather IoT malwares’ behaviors and represent them
as behavior pairs <characteristic resource, operation type>.
In each pair, the first item represents the accessed resource
of the behavior, and the second item represents the detailed
type of the access to the resource indicated by system call
trace. The analytical techniques here are not presented as our
contributions. Analysis details and the dataset can be referred
to the aforementioned supplementary material1.

Paradigm Distillation. Based on the aforementioned anal-
ysis methods, we acquire concrete behavior characteristics
of IoT malwares. Nevertheless, IoT malwares usually evolve
rapidly based on their original versions, which leads to con-
stant changes in specific resources they accessed. For effective
defense, we should focus not only on the concrete operations
of collected samples but also other functionally related behav-
iors targeted at resources with similar security sensitivity to
achieve the same intention. Therefore, we apply an abstraction
methodology to distill a typical malware behavior paradigm as

4

<Security Context, Behavior Class> Family Example

<wtmp.logtmpfile, unlink> Gafgyt
<file.initscriptfile, add_name> Tsunami
<rccron.initscriptfile, execute> Mirai

…… ……

<Security Context, Behavior Class> Family Example

<file.execfile, unlink> Gafgyt
<irc.netport, name_connect> Tsunami

<sys.subj, sigkill> Mirai
…… ……

Entrance

Malware

Clean up wtmp file to conceal login activities
Add fake startup scripts in /etc/init.d
Schedule the auto-execute job with crontab
……

 A
bs

tr
ac

tio
n

Delete system components
IRC-based DDoS bot
Sigkill system processes
……

<Security Context, Behavior Class> Family Example

<cpuinfo.procfile, read> Gafgyt
<net.procfile, read> Tsunami

<suspicious.subj, sys_ptrace> Mirai
…… ……

Infection Reconnaissance Persistence Impact
C

on
cr

et
e

B
eh

av
io

rs
Li

fe

C
yc

le
A

bs
tr

ac
t

B
eh

av
io

rs

Read sys-information, such as /proc/cpuinfo
Check net-information, like /proc/net/route
Detect the debug environment for anti-analysis
……

Vulnerability exploitation
Password cracking
……

Fig. 2: The behavior paradigm of IoT malware. The bottom layer represents concrete behaviors of samples, while the middle
layer is the corresponding abstract behavior pairs, and the top layer describes stages of the malware lifecycle.

shown in Figure 2, which can correspond concrete operations
to abstract behavior pairs by behavior abstraction, and map
them to the stages of malware lifecycle by behavior intention
analysis. This hierarchically abstracted paradigm can make
MIDAS more robust when confronted with new variants.

1) Behavior Abstraction: First, we abstract concrete be-
havior pairs <characteristic resource, operation type> into
pairs of target security contexts and behavior class, i.e. <se-
curity context, behavior class>. Security contexts support the
classification of resources, such as files, processes, network
ports. Based on the standard SELinux policy in IoT domain,
DSSP [17], we can obtain and customize fine-grained security
contexts of each characteristic resource used in the behavior.
The behavior class item represents operation categories of
the access to the resource, including common types such as
read, write, etc., as well as sensitive system capabilities like
sys ptrace (ptrace to others) or sys nice (change priority).
Overall, the pair <security context, behavior class> can be
regarded as an abstraction of a certain kind of behaviors from
a security sensitivity perspective. Even if concrete behaviors to
achieve similar malicious intentions might change in new vari-
ants, their operations’ security contexts and behavior classes,
i.e abstract pairs, remain relatively consistent and stable.

Take behaviors in the “Persistence” stage of the malware
lifecycle as an example shown in Figure 3. To auto-start after
reboot on the device, malware families like HideNSeek copy
itself to the /etc/rc.d directory, randomly named as S99lbdj or
S99jcfk. If we directly use this concrete path or filename as
behavioral characteristics, it can be easily bypassed by new
variants, like Mozi, that may accomplish the same persistent
intention by adding a startup script named S95baby.sh to
the /etc/init.d directory. Nevertheless, the security context of
these two accessed resources is the same, i.e. file.initscriptfile
for their similar functionality, i.e. auto startup. Therefore, if
abstract behaviors, i.e. the identical one <file.initscriptfile,
add name>, instead of concrete ones are utilized as repre-
sentation in the paradigm, distinct persistence behaviors can
be recognized. Even the two variants from different malware
families (HideNSeek vs. Mozi) try to persist on devices with
different file formats (binary vs. script), camouflaged as dif-
ferent names (S99jcfk vs. S95baby.sh), and located at distinct
directories (/etc/rc.d vs. /etc/init.d), the abstract paradigm can
still be robust to identify behaviors for defense.

2) Behavior Intention Analysis: Second, we analyze each
abstract behavior pair to figure out its malicious intention and
build the mappings of abstract behaviors and malware lifecycle
stages. Each abstract pair represents the malicious behaviors
targeted at a particular class of resources, which achieves

a certain intention to complete a part of the lifecycle. For
each pair after de-duplication, we filtered out malware samples
with such identical abstract behavior pair. Then according to
the VirusTotal reports, samples with the longest prevalence,
the earliest or the latest discovery time are picked out. They
provide a good representation of how the concrete behavior
corresponding to an abstract behavior pair changes throughout
the mutation of malwares. We further send these samples to
Joe Sandbox [18] for analysis. Based on the generated MITRE
ATT&CK Matrix [19] [20], we can acquire the intention
behind the behavior, which belongs to the corresponding stage
of the malware lifecycle. For few behaviors that fail to be
discovered by sandbox analysis, we manually analyze the
behavior by reverse engineering the binary and estimate the
stage of the malware lifecycle when the behavior is conducted.

In this way, we can determine which stage of the malware
lifecycle this abstract behavior pair attempt to accomplish for
the malicious intention and thus build mappings between pairs
and stages as shown in the middle layer to the top layer of the
paradigm in Figure 2. Such a process allows us to represent
behaviors conducted along the whole malware lifecycle in a
structured way with deeper abstraction, which further provides
us with the ground truth of defending IoT malwares.

Sensitive Behavior
Acquisition

Behavior
Abstraction

Behavior Intention
Analysis

HideNSeek

Concrete
Behaviors

Abstract
Behaviors

Lifecycle

<file.initscriptfile,
 add_name>

<file.initscriptfile,
 add_name>

{<file.initscriptfile, add_name>,
Persistence}

</etc/init.d/S95baby.sh,
 create>

</etc/rc.d/S99jcfk,
create>

Paradigm

{<file.initscriptfile, add_name>,
Persistence}

Mozi

Malwares

Self-copy
to /etc/rc.d/S99jcfk

Append scripts to
/etc/init.d/S95baby.sh

Fig. 3: The example workflow for distilling a set of behaviors
to the paradigm. The data marked near the dashed line
indicates the intermediate output after each procedure.

Paradigm Overview As shown in Figure 2, after the afore-
mentioned procedure, we construct a hierarchical paradigm
for malware behaviors represented with abstract and stable
characteristics. First, we collect concrete behaviors based
on tailored malware analysis methods in Sensitive Behavior
Acquisition. For example, as illustrated in Figure 3, this pro-
cedure can obtain the concrete behavior pairs of HideNSeek
and Mozi malwares as </etc/rc.d/S99jcfk,create> and
</etc/init.d/S95baby.sh,create>. Then the concrete behaviors
targeting the same resource category can be characterized
into the same abstract behavior pair by Behavior Abstraction.
That is, in Figure 3, distinct concrete behaviors of the two
malwares can be abstracted to the same pair <file.initscriptfile,
add name>. Further, Behavior Intention Analysis obtains ma-

5

licious intentions behind behaviors to map abstract behaviors
to malware lifcycle stages. Specifically, both behaviors of
the two malwares in Figure 3 aims to achieve auto startup,
hence being mapped to the persistence stage. Altogether, the
conversion from concrete behaviors to abstract behaviors and
then malware lifecycle allows MIDAS to characterize IoT
malwares’ behaviors in a robust way.

B. Real-Time Behavior Auditing

Based on the constructed behavior paradigm, we further
design a real-time behavior auditing mechanism to defend
against malwares. Specifically, to monitor suspicious behav-
iors of break-in programs, we devise an SELinux policy for
malware defense, named MD policy, based on the paradigm.
It can trigger SELinux to record sensitive concrete behaviors
of break-in programs as AVC messages in real-time with low
overheads. Then we aggregate AVC messages of homologous
processes produced by the same break-in entity to form a
behavior message sequence during Homology Tracing. Next
in Behavior Identification, aggregated AVC messages in the
sequence can be summarized into abstract behavior pairs. By
piecing up those pairs into stages of the malware lifecycle
based on mappings in the paradigm, we can identify the ma-
liciousness of break-in programs and further constrain them.

Policy-driven Behavior Monitoring. Implementing moni-
toring based on the built-in SELinux policy is an efficient and
practical solution for heterogeneous Linux-based IoT devices.
Linux is the top OS of IoT devices [1], and SELinux is a kernel
module in it. This module can be ill-suited to be used on tradi-
tional domains like PCs, due to their changing functionalities
and user interaction which requires policy adjustments. But
most embedded devices are fixed-function and single-purpose,
improving the SELinux usability in IoT domain. Thus with
suitable SELinux policy loaded into the firmware, we can
efficiently monitor sensitive behaviors of break-in programs
in real-time as AVC messages, as shown in Figure 4.

SELinux Kernel Module

MD Policy

Initial Transition

S

Concrete
BehaviorsAccess Vector Cache

Firm
w

are

AVC
Messages

Intruding
Programs

Fig. 4: Policy-driven behavior monitoring procedure in MI-
DAS. After the initial transition, the intruding program will be
labeled, and its concrete behaviors can be monitored as AVC
messages driven by the MD policy.

For design the MD policy, 1) first, we identify the processes
that need to be monitored, i.e. the monitored requester of the
resource. This will be used as the scontext item in the policy.
We introduce the unified security context suspicious.execfile
for break-in programs and suspicious.subj for their processes.
With the type transition statements [21] dedicated to common
attack entry points, MIDAS enables programs entering by these
portals to be automatically labeled with suspicious.execfile. All
the related files generated by these programs will be labeled
with the same context as well. When these programs are
executed, the security context of the corresponding processes
can be transitioned to suspicious.subj. This will be used as

scontext in MD policy rules, i.e., programs to be monitored.
After such initial transition, break-in programs can be labeled
with the suspicious security context, and then the program as
well as its generated files are included in the monitor scope.
2) Next, to monitor suspicious behaviors, their requested
resources’ security contexts (i.e., tcontext) and their operation
class (i.e., behavior class) can be obtained from the abstract
behavior pairs in the paradigm. Overall, the key items in
SELinux Policy are obtained, and thus we can implement a
series of rules for malware defense, i.e. MD policy.

After MD policy is loaded in the kernel, any suspicious
operation specified in this policy will trigger SELinux to gener-
ate a corresponding AVC message. With generated messages,
MIDAS enables behavior monitoring of break-in programs in
real-time. This procedure is independent of concrete payloads
conducted by the programs, even zero-day exploitations, al-
lowing a more general defense against malware variants.

Homology Tracing. Homologous processes are those de-
rived from the same program entity. Many camouflage strate-
gies, like self-copy or self-rename, are employed by IoT
malwares to conceal themselves and decentralize malicious
behaviors to submodules. For instance, the malware Omni can
duplicate and rename itself as ls to reside in a covert path.
The processes associated with duplicated malicious ls are ho-
mologous with processes of the original Omni binary. To fully
reveal break-in program’s activities under disguise, homology
tracing is designed to estimate relations of processes and
assemble malicious behaviors scattered among homologous
processes. Namely, by aggregating homologous processes’
behaviors represented as AVC messages, we can form a
behavior message sequence, describing complete suspicious
behaviors of the intruding program even if adopting disguises.

As shown in Algorithm 1, the homologous relations of
processes can be decided based on three progressive indicator:
the process identifier (i.e. PID), the pathname (i.e. Path) and
the memory hash value (i.e. Hash). ① The PID refers to the
ID of process that conducts the operation triggering the AVC
message. Based on the parent-child relations, it can be cheaply
utilized to determine the program’s processes spawned through
fork(), execve() or system() even with fake process name.
However, it neglects processes created from re-execution of
the same malware binary. ② Hence, the Path indicator is
introduced to compare the exact path of the process’s binary
and thus fix this problem. However, although the re-executed
process can be recognized by the same path of the binary
even after its self-deletion, it is possible for a malware to copy
or rename its binary, changing its path to achieve disguises.
③ Therefore, we further calculate the hash value of the
memory-mapped file, i.e. Hash, to deal with other elaborate
camouflage techniques. This can identify malicious processes
from the identical break-in program and avoid heavy I/O costs.

The algorithm of homology tracing procedure is presented
in Algorithm 1. It aggregates the input AVC messages M to
build an array Q as output, which contains a combination of
homologous process tree t and its behavior message sequence
with all related AVC messages msg. Homologous process
tree is a path-splitting process tree structure to maintain
each collection of homologous processes. And the behavior

6

message sequence contains all AVC messages triggered by
the homologous processes in the corresponding tree.

Algorithm 1: Aggregating Behavior Trace
Input: Real-time AVC messages M
Output: An array Q of pairs consisting of tree t and

message msg
Data: Created process-tree set tSet, collected pathname

pMap and hash value hMap of intruding programs
1 Q← ∅, tSet← ∅
2 for msg ∈M do
3 pid← extract(msg) // ①
4 t, pidroot ← tSet.search PTree(pid)
5 if is exist(t) then
6 t.add(pid)

7 else
8 pathroot ← readlink exe(pidroot) // ②
9 hashroot ← calculate crc32(pidroot) // ③

10 if pathroot ∈ pMap then
11 t← tSet.get(pMap [pathroot])
12 t.add(pid)

13 else if hashroot ∈ hMap then
14 t← tSet.get(hMap [hashroot])
15 t.add(pid)

16 else
17 t← tSet.create PTree(pidroot) t.add(pid)
18 hMapp [pathroot]← pidroot
19 pMapp [hashroot]← pidroot

20 Q.update(t,msg)

Specifically, the algorithm preferentially extracts the PID
(i.e. pid) from each AVC message (i.e. msg). As the input of
searchPTree(), the PID helps to find the homologous process
tree t and its root process node pidroot. Meanwhile, search-
PTree() can recursively search and merge existing trees based
on the parent-child process relations defined in /proc/$pid/stat
using path-splitting algorithm. The obtained correspondences
between PIDs and process trees are cached in tSet to accelerate
tracing afterwards (Lines 2-4). If the required tree exists,
MIDAS will add this PID node to the current tree t (Lines 5-6).
As the example shown in Figure 5.(a), the No.2720 process
is a child process spawned by the parent (No.2699) of Ganiw
malware to assign malicious tasks. Based on this parent-child
process relation, No.2720 is merged into the green part of
its homologous process tree β. Other nine processes (i.e.
No.2713, No.2720, No.2727-No.2734) are forked by No.2699
as well, and are also added to the tree. Particularly, with
path-splitting utilized in searchPTree(), Figure 5.(a) can be
compressed into Figure 5.(b). Hence, homology tracing can
be accelerated when searching process trees afterwards.

If the condition in Line 5 fails, MIDAS relies on the Path
or Hash of the process to defeat possible camouflage(Line
8,9). Once the running process has the same pathname as any
previous one, MIDAS will add this process into the process
tree and confirm the homologous relation (Line 8, 10-12). The
Path value here can be obtained by reading the symbolic link
of /proc/$pid/exe, which points to the executed binary even
self-deletion happens. If the homologous relation still cannot
be estimated, a lightweight half-byte CRC32 algorithm is
designed to calculate Hash based on the first memory-mapped

file in /proc/$pid/map files, avoiding heavy I/O. Programs with
an identical Hash will be taken as homologous ones and
added to the same process tree (Lines 9, 13-15). As shown
in Figure 5, since Hash of getty and l1bhr related to No.2718
and No.2725 processes are identical with Hash of the original
one ganiw (i.e. No.2699), the homologous relations of these
processes are determined. Further, along with sub-processes
spawned by these three binaries marked as respective colors in
Figure 5, all the homologous processes can be combined into
one process tree β. If all the conditions above are not satisfied,
the process is considered from a new break-in program. After
creating a new process tree for it, MIDAS will update pMap
and hMap to record its Path and Hash (Lines 16-19).

Finally, this process’s AVC message msg will be updated to
the behavior message sequence related to the obtained process
tree accordingly (Line 20). As illustrated in Figure 5, the
AVC messages concerned with No.2752 can be included into
the sequence related to the homologous process tree β. The
sequence contains AVC messages of homologous processes,
including all suspicious behaviors along Ganiw’s lifecycle.

On the whole, each homologous process tree can aggre-
gate AVC messages triggered by homologues to constitute a
complete behavior message sequence. In the following, it can
provide a complete view of programs’ behaviors to defend
against possible disguised malwares.

Behavior Identification. For each group of homologous
processes, their behaviors have been aggregated in the se-
quence with AVC messages. MIDAS first extracts and then
summarizes the target security context (i.e., tcontext) and the
behavior class items as abstract pairs from each message in the
sequence. tcontext records the security context of the requested
resource, while behavior class shows the operation category
of the access. Iterating the message sequence, such procedure
can obtain the behaviors conducted by the break-in homolo-
gous processes throughout their lifecycle and accomplish the
conversion from concrete behaviors to abstract behavior pairs.

We give an example of the AVC message in Listing 1
in Section II, where the tcontext and the behavior class
can constitute an abstract behavior pair <file.initscriptfile,
add name>. This pair represents a behavior that the break-
in program adds files to a directory for auto-start to achieve
persistence. Even if the malware forges its process name (i.e.,
comm field) to a benign program like cat, the behavior class

No.2699 Memory
Hash

Memory
Hash

Homologous Process Tree β

Pa
re

nt
-C

hi
ld

 R
el

at
io

ns
hi

p

… … …

Path-Splitting

Homologous Process Tree β (After Path-Splitting)

ganiw getty

Duplicate

l1bhr

Duplicate

No.2718 No.2725

No.2713 No.2720

No.2728 - No.2734 No.2757 - No.2763 No.2752

No.2748No.2744

No.2750No.2727 No.2755 No.2699

No.2725No.2718 No.2752

Behavior Message
Sequence Related to β

New AVC Message
of No.2752

Access Vector
Cache

Aggregating Messages Related to Ganiw Behavior Trace

Binaries:

MsgMsgMsg

（a） （b）

Fig. 5: Homology tracing of MIDAS when defending ”Ganiw”
(MD5: 0ddda3bb8590616f803a7320d890645e). Circles repre-
sent processes generated by ”Ganiw”. Solid lines show ho-
mologous relationships between processes while dashed lines
indicate reasons for the generation of processes.

7

and the target security context can still be faithfully recorded.
In addition, according to the source security context, we can
also figure out that this program is not the cat program
(with file.execfile), but a suspicious program from the outside
(with suspicious.subj). More importantly, the target security
context file.initscriptfile is a common label of directories for
persistence intention. Thus even if a new variant changes the
concrete path (i.e. ”/etc/rc.d”) it accesses for auto-start, the
corresponding behavior message, like Listing 1, can still be
triggered and extracted to the consistent abstract behavior pair.

After the above summarization, MIDAS attempts to remap
the abstract behaviors to the malware lifecycle stages and
estimate the maliciousness of break-in programs. Through
behavioral characteristic extraction, we have established the
mappings between the abstract behavior pairs <security con-
text, behavior class> and the stages of the malware lifecycle in
the behavior paradigm. Based on this, MIDAS can analyze each
abstract pair obtained from the behavior message sequence
and determine which stage of the malware lifecycle it relates
to. IoT malware relies on complete lifecycle to enable a
valid attack flow. Thus if behaviors conducted by a group of
homologous processes are possible to constitute a malware
lifecycle, the corresponding program will be identified as
malicious and its impact attempts to devices will be denied.
MIDAS will kill all the related processes, remove the files and
all copies based on its homologous process tree and pathnames
to constrain them from violating the system.

IV. IMPLEMENTATION

We implemented MIDAS on OpenWrt with ARM, MIPS
and MIPSEL architectures, which are the main targets for IoT
malwares [22]. OpenWrt is one of the most popular firmwares
for IoT devices and supports up to 1,981 different models [23].
It is widely used in previous works like [11], [24] and [25].
Besides, MIDAS is not limited to the three architectures or
OpenWrt. It can be adapted to any Linux-based IoT device
with any architecture by only recompiling the source code of
MIDAS and configuring SELinux options of Linux kernel.

Specifically, the MD policy is implemented with Common
Intermediate Language (CIL) based on DSSP [17] with more
than 4,276 additional lines of code. In it, we design security
contexts to label break-in programs, modify some system
resources’ security contexts, and devise rules based on the
paradigm for fine-grained behavior monitoring. After compiled
by secilc, a compiler for SELinux policy written in CIL, the bi-
nary file of MD policy can be generated. We further embedded
it into the firmware and load it when booting. The homology
tracing and behavior identification are implemented with C++,
which analyze break-in programs’ behaviors through AVC
messages from /dev/kmsg triggered by MD policy. This part
runs as a background service and is protected by the MD pol-
icy from being tampered. The behavior paradigm is embedded
in MIDAS’ modules throughout the auditing process.

V. EVALUATION

To present the effectiveness of MIDAS on IoT devices, we
conduct thorough experiments on both benchmark malware
datasets as well as real-world attack scenarios, and perform

comparisons with the state-of-the-art studies. Accordingly, we
answer the following research questions:

• RQ1: How is the performance of MIDAS to safeguard
IoT devices against real-world attacks in real-time?

• RQ2: How is the effectiveness of MIDAS in protecting
IoT devices with various hardware resources against
benchmark IoT malwares?

• RQ3: How is the overhead of MIDAS in resource con-
strained IoT devices of different architectures?

• RQ4: How is the performance of MIDAS compared with
the start-of-the-art studies?

A. Performance in Real-World Scenarios

Geo-location Arrangement. To evaluate MIDAS’ effective-
ness against currently prevalent IoT malwares in real world,
we deployed 60 virtual IoT devices with OpenWrt firmware
on the public Internet for 25 days. These devices exposed
customized vulnerable services, i.e. telnet and ssh, accepting
any credentials submitted by attackers, thus attracting more
IoT malwares. To reduce possible biases, 60 devices were
equally distributed across ten countries in five continents
and configured with heterogeneous architectures, as shown in
Figure 6. In each country, there were two ARM, two MIPS
and two MIPSEL devices. Among the two devices of each
architecture in the same country, one was equipped with built-
in MIDAS, and the other was not. So overall, half of devices
were safeguarded by MIDAS and the other half were not.

Fig. 6: The geolocation of 60 publicly available virtual IoT
devices of three architectures with or without MIDAS.

Data Collection. For each device, we collected login ses-
sions, intruded malwares, logged records with their run-time
behavioral information and took necessary snapshots. The size
of the collected data is up to 2.88 TiB. Since the deployed
devices do not provide common public services, the incoming
traffic is mostly from attackers rather than legitimate users.
Such idea is consistent with honeypots [11] or passive traffic
monitoring systems [26]. Hence, the login session information
can reflect the extent of attacks. We counted the times of each
device was logined as the number of attacks and recorded their
source IPs. We also backed up malwares and preserved the
device status by taking snapshots. Each collected sample have
been submitted to VirusTotal to determine its maliciousness,
and record its family and first-found time if confirmed. Over-
all, the collected information help us have a closer look at the
intrusion process of malwares, even previously unknown ones,
and MIDAS’ defense procedure against real-world attacks.

8

TABLE I: Results of MIDAS defending against real-world attacks. The ”LOCATION” column indicates the country where the
devices were located. The following columns indicates the respective architectures of the corresponding devices. Shaded rows
are the results of devices protected with MIDAS, while the others show the results of devices without MIDAS. For each device,
”Under attack” shows the number of attack times (Att.), the amount of source IP (IPs) where the attacks originate and the
number of compromised incidents of devices (Comp.). ”Malware Intrusion” shows the number of the intruding malwares (Total),
unique malware amounts (Uniq.) and the number of newly-discovered malware samples (New). The last column (Comp. Ratio)
shows the ratio of the total compromised incident amounts of devices with MIDAS to devices without MIDAS in each region.

LOCATION ARM MIPS MIPSEL
Comp.
Ratio

Under Attack Malware Intrusion Under Attack Malware Intrusion Under Attack Malware Intrusion
Att. IPs Comp. Total Uniq. New Att. IPs Comp. Total Uniq. New Att. IPs Comp. Total Uniq. New

North America

America 2,550 617 40 210 58 33 21,091 1,483 610 2,261 194 123 6,614 1,415 142 720 155 92

AmericaMIDAS 6,060 1,372 0 255 89 18 48,945 1,308 3 423 118 75 23,194 1,362 0 518 146 65 3: 792

Canada 8,222 1,938 365 1,856 134 22 27,671 1,791 193 3,496 381 341 11,792 1,716 315 1,504 188 123

CanadaMIDAS 19,584 1,715 1 791 178 37 49,457 1,513 4 776 141 69 20,238 1,605 1 514 152 85 6: 873

South America

Brazil 14,429 1,808 449 2,664 243 133 21,416 1,541 793 2,834 247 179 10,672 1,517 253 1,399 159 124

BrazilMIDAS 17,293 2,171 2 748 243 115 20,814 1,713 0 477 117 43 8,833 1,573 0 297 99 55 2: 1,495

Europe

Britain 19,545 1,651 985 5,291 287 101 8,624 1,729 276 1,420 125 64 10,295 1,590 391 1,380 165 112

BritainMIDAS 15,161 2,135 1 666 230 68 9,902 1,735 0 777 209 89 29,660 1,296 0 387 113 63 1: 1,652

Germany 8,324 1,743 356 1,860 207 73 15,823 1,482 367 1,469 124 87 16,289 1,551 470 1,634 177 153

GermanyMIDAS 25,865 1,645 1 465 183 72 16,385 1,683 0 274 95 54 19,605 1,497 1 489 146 76 2: 1,193

Netherlands 2,805 856 47 287 125 36 12,500 1,709 490 1,818 177 122 7,742 1,459 134 768 124 67

NetherlandsMIDAS 10,865 2,387 0 730 237 107 14,423 1,767 0 561 153 92 10,759 1,698 1 396 158 104 1: 671

Asia

India 17,935 1,883 1,318 7,215 381 116 7,144 1,464 265 994 131 68 4,819 1,093 31 449 110 63

IndiaMIDAS 24,626 2,051 1 844 254 109 12,719 1,616 1 324 92 31 17,640 1,608 1 599 136 74 3: 1,614

Singapore 7,553 1,574 261 1,401 140 52 9,579 1,625 417 1,659 125 78 12,753 1,602 341 1,320 179 112

SingaporeMIDAS 30,105 1,620 0 356 117 53 34,879 1,369 5 452 82 43 24,651 1,615 0 508 134 71 5: 1,019

Indonesia 9,766 1,949 593 3,162 229 108 10,458 1,781 412 2,206 169 100 7,211 1,546 127 987 201 84

IndonesiaMIDAS 3,852 1,073 1 604 150 45 12,846 1,706 7 519 152 47 31,585 1,347 0 224 66 26 8: 1,132

Oceania

Australia 8,133 1,678 307 1,754 212 46 11,993 1,179 250 1,131 155 95 10,297 1,709 325 1,407 132 90

AustraliaMIDAS 23,692 1,500 0 468 138 67 29,436 1,019 0 366 116 29 14,832 1,705 2 615 144 64 2: 882

Summation 276,365 22,442 - 31,627 1,382 572 396,105 21,109 - 24,237 1,332 933 299,481 20,465 - 16,115 1,058 704 33: 11,323

In addition, we used heartbeat mechanisms and the network
monitor Snort to track traffic amount and device status. If the
device loses accessibility or is used as a bot, it is considered
to be compromised. The device will be reset immediately,
and the source IP will be blocked to expose the device to
other attackers. We use the number of times devices were
compromised as metrics to evaluate the defense capability.

Statistics Analysis. As shown in Table I, all 60 IoT
devices deployed worldwide encountered severe attacks. A
total of 971,951 attack sessions reached devices for 25 days,
originating from 48,805 IPs spreading over 167 countries. And
we observed a total of 31627, 24237, and 16115 malwares in
ARM, MIPS, and MIPSEL devices respectively. Among them,
572, 933 and 704 unique malware samples are previously
unknown. It illustrates that lots of IoT malwares are active
on the Internet and their attacks are surging all the time.

In the experiment, devices without MIDAS were severely
disrupted. They were attacked by 2,386 different malwares
in total. On average, each device has compromised for 377.4
times in 25 days. The most severely corrupted one was the
ARM device in India, which was compromised up to 172 times
in one day. Moreover, these devices were all used as DoS
bots at least once. The most severe one, the ARM device in
Brazil, has generated nearly 137Mbps attacks. Snort recorded

and blocked such outbound traffic timely. Due to our traffic
monitoring mechanisms, the device will be automatically reset
if used as a bot, thus not damaging third-party hosts.

The status of MIDAS-protected devices, however, was quite
different. As shown in Table I, despite a large amount of
attacks and new variants, MIDAS can still effectively safeguard
IoT devices. Specifically, MIDAS has successfully defended
against 15,423 malwares. On average, each device has lost
accessibility less than 1.1 times during the entire 25-day
period. Compared with the most severely corrupted device in
the group without MIDAS, the corresponding MIDAS-protected
one, located in India with ARM architecture, only lost network
accessibility once in 25 days. Meanwhile, no devices in
the safeguarded group were used as bots during the whole
experiment. Overall, for IoT devices with MIDAS protection,
the number of compromised incidents has decreased 343.1×,
and the length of continuous operation time is 179.2× greater
than the group without MIDAS on average. This demonstrates
that MIDAS can successfully defend against the latest variants
in real-world timely, based on the robust behavior paradigm.

For compromised cases, we analyzed the logs including
AVC messages and related samples to depict the attack pro-
cess, and restored the snapshots to identify the compromise
reason. In the MIDAS-protected group, compromised situations

9

were judged to lose availability due to severe external DDoS
attacks, further causing network instability and heartbeat
packet loss. Thus these MIDAS-protected devices were threat-
ened by DDoS attacks on the Internet rather than intruding IoT
malwares. Conversely, for devices without MIDAS, 58.6% of
the compromised incidents were caused by accessibility loss,
including the critical service termination, severe corruption to
the file system, etc., of which only 0.5% were affected by the
external DDoS attack mentioned above (34 times). And 41.4%
of compromised incidents were deemed to be used as bots.

In addition, we cross-checked malwares intruding into the
devices with MIDAS and the ones without MIDAS. Among
them, 443, 746 and 389 malwares only attacked devices
without MIDAS but were not found in the protected ARM,
MIPS and MIPSEL devices respectively. We thus executed
these malwares in MIDAS-protected IoT devices. Results
showed that MIDAS could defend against all of them, while
the original devices without MIDAS were compromised 969
times because of these malwares. On the other hand, there
were 244 malwares attacking MIDAS-protected devices but
not on the other group. We further executed these malwares
inside a device without MIDAS, and found that 103 of them
can compromise the device, while none of them successfully
compromised the MIDAS-protected hosts in the experiment.
Such cross-validation fully demonstrates that devices with
built-in MIDAS can effectively defend against attacks from
identical IoT malwares compared to the other group.

❶{ read } for pid=16673 comm="Runn" path="/proc
/16673/net/raw" … tcontext=net.procfile…
❷{ read } for pid=16673 comm="Runn" path="/proc
/16673/net/tcp" … tcontext=net.procfile…
❸{ sys_ptrace } for pid=16673 comm="Runn" …
scontext=suspicious.subj tcontext=suspicious.subj …
❹{ remount } for pid=16679 comm="mount"…
scontext=suspicious.subj tcontext=xattr.fs …
❺{ write } for pid=16673 comm="dropbear"
 name="rc.local" … tcontext=rclocal.conffile …
❻{ add_name } for pid=16673 comm="dropbear"
name="S95baby.sh" … tcontext=file.initscriptfile …
❼{ unlink } for pid=16681 comm="dropbear"
 name="policy.31" … tcontext=selinux.secfile …
❽{ write } for pid=16683 comm="iptables" …
scontext=xtables.subj tcontext=suspicious.subj …
❾{ name_connect } for pid=16677 comm="dropbear"
 dest=37215 … tcontext=dangereph.netport…
❿{ name_connect } for pid=16677 comm="dropbear"
 dest=52869 … tcontext=dangereph.netport…

(1) Policy-driven Behavior Monitoring

Aggregate
Related

Messages

(2) Homology Tracing

(3) Behavior Identification

<net.procfile, read> ❶❷
<suspicious.subj, sys_ptrace> ❸

<xattr.fs, remount> ❹
 <rclocal.conffile, write> ❺

<file.initscriptfile, add_name> ❻

<selinux.secfile, unlink> ❼
<xtables.subj, write> ❽

<dangereph.netport, name_connect>❾❿

Infection ⓿

Reconnaissance

Persistence

Impact

Mozi …

Gafgyt Mozi

Partial Mozi Behavior Message Sequence

AVC Messages

…

Initial
Transition

Mozi Process with
Suspicious.subj Context

Mozi
Infection

Concrete
Behaviors

⓿ AVC

Fig. 7: MIDAS’ defense procedure against the Mozi variant,
i.e. mozi.a (MD5: eec5c6c219535fba3a0492ea8118b397).

Case Study: MIDAS has successfully defended 1,019
unique malwares under 627,906 times of attacks over the
25 days. Among them, the IoT malware Mozi enjoyed a
huge surge in the world [27]. We take it as an example to
illustrate the behavior auditing procedure of MIDAS. Driven
by MD policy, MIDAS monitored Mozi’s behaviors in real-time
after initial transition from wget entry point, and recorded as
AVC messages shown in Figure 7.(1). In this example, Mozi
first gathered network information from /proc/$pid/net/raw and
/proc/$pid/net/tcp at the reconnaissance stage (❶-❷). It then
applied an anti-debug trick, tracing itself to detect debugger

since one process can only have one tracer at a time (❸).
Meanwhile, Mozi remounted the ”/overlay” file system with
read/write permissions (❹), camouflaged its process name to
”dropbear” and created scripts for auto startup in multiple
ways for persistence (❺-❻). Finally, it attempts to achieve
impacts, trying to damage the secure mode environment (❼),
tamper iptable rules (❽) and execute payloads targeting vul-
nerabilities like CVE-2017-17215 for proliferation (❾-❿). Al-
though these behaviors were conducted by many submodules,
i.e. different processes from distinct re-executions, MIDAS can
still aggregate them into one message sequence of the same
homologous process tree, as shown in Figure 7.(2), After
the message sequence was abstracted, MIDAS then utilized
these abstract pairs to identify the malware lifecycle based on
the behavior paradigm as shown in Figure 7.(3). Obviously,
none of the sub-process could assemble the complete stages
of malware lifecycle alone, which indicates the necessity of
homology tracing. Finally, all the homologous processes were
killed, and the related binaries were removed, thus constraining
it from destruction and spreading.

According to VirusTotal, this variant was first discovered on
June 17, 2021, and is one of the most heavily mutated active
versions from the original one. In general, suffering threats
from the latest variants under various disguises, MIDAS can
still audit malware behaviors and achieve effective defense.

B. Effectiveness on Benchmark Malwares

To further evaluate the effectiveness of MIDAS, we con-
ducted experiments on benchmark dataset composed of
115,970 IoT malwares distributed in 28 families. The eval-
uation is performed on 24 virtual IoT devices with distinct
hardware in terms of architectures, CPU models and memory
sizes to verify the performance on devices with different
resources, as shown in Figure 8.

Fig. 8: The defense rates of MIDAS on IoT devices with 24
different hardware resources.

We put each malware of the datasets into a MIDAS-protected
virtual device and executed it. If the device meets any of
the following conditions, we assume that the device has been
compromised: (1) lose accessibility, (2) be used as a DoS bot,
(3) the malware process still exists in a limited time (we select
five minutes as the limit referred to [15]), (4) the malware
persists after a reboot. Otherwise, we consider MIDAS to
have successfully defended the malware. After each test, we
reset the device to ensure environment consistency. Finally, we
calculated successfully defended malwares on each device.

Results are presented in Figure 8. It can be seen that on
ARM, MIPS and MIPSEL devices, MIDAS can defend against
up to 94.46%, 91.79% and 88.34% of the benchmark samples,
respectively. This illustrates that MIDAS can effectively defend

10

2.03% 2.08% 2.20%

27.6MB 28.1MB 28.2MB

CPU MEM CPU MEM CPU MEM
Idle Device

Without Midas
Device

With Midas
Device

With Midas
(Under Attack)

0

1

2

3

4

0

10

20

30

40

2.62% 2.73%
2.97%

34.6MB 36.3MB 36.4MB

CPU MEM CPU MEM CPU MEM
Idle Device

Without Midas
Device

With Midas
Device

With Midas
(Under Attack)

0

1

2

3

4

0

10

20

30

40

2.25% 2.27%

2.79%

34.7MB 36.4MB 36.5MB

CPU MEM CPU MEM CPU MEM
Idle Device

Without Midas
Device

With Midas
Device

With Midas
(Under Attack)

0

1

2

3

4

0

10

20

30

40
C
PU

 U
sa

ge
(%

)

M
em

or
y

U
sa

ge
(M

B
)

C
PU

 U
sa

ge
(%

)

M
em

or
y

U
sa

ge
(M

B
)

C
PU

 U
sa

ge
(%

)

M
em

or
y

U
sa

ge
(M

B
)

ARM MIPS MIPSEL

Fig. 9: The CPU and memory usage of MIDAS on IoT devices with three architectures under different circumstances. The first
”Idle Device” group indicates the hardware usage when the device is fully booted and not installed with MIDAS. Increments
in the second and third groups represent the overhead of MIDAS in the case of devices with or without malware attacks.

against malwares on different architectures. We have carefully
analyzed unsuccessful defense cases and found that the devices
were judged to be compromised because of the third criterion
(i.e., malware process exists over 5 minutes). We found that
some C&C servers required for these malwares were no longer
accessible. Some malwares, like Gafgyt variants, will not
attempt to cause malicious impacts to the device but constantly
try to connect or sleep when they cannot connect to the C&C
server. Thus MIDAS could not identify the malwares without
behaviors of its entire lifecycle in 5 minutes. However, it also
means that the C&C server of these variants is no longer
active and cannot pose a severe threat in actual attacks. In
fact, malwares with partial lifecycle are either impossible, as
they lack key steps to penetrate a device, or cannot cause any
serious harm, thus they do not affect IoT devices’ functionality.
This situation only appears when malwares have become
dormant and cannot accomplish their whole intentions. Once
these malicious programs become active and try to damage
the device, they will be stopped by MIDAS.

Meanwhile, as can be seen from the figure, the CPU and
memory resources do not have a significant influence on MI-
DAS’ performance. The average variation of MIDAS’ defense
rate is only 1.53% on devices with various hardware resources.
We further analyzed the reasons for such variation specially
when memory resources are limited under 32 MiB. With such
hardware, some malware samples’ execution was severely
affected and could not sufficiently expose their behaviors
within the time limit. Since MIDAS estimates programs’ ma-
liciousness based on their behavioral attempts, such situations
might affect the experiment results in 5 minutes.

C. Overhead of MIDAS

For constrained IoT devices, it is crucial to ensure that
security mechanisms are lightweight. To evaluate its overhead,
we measured the CPU and memory usage of the system
under three conditions: (1) without MIDAS protection, (2) with
MIDAS protection but without malware infection, (3) with
MIDAS and currently defending against malware attacks.

Experiments were conducted on an ARM Cortex-A15 vir-
tual device, a MIPS 24Kf virtual device, and a MIPSEL 24Kf
virtual device. The selected CPUs were released before 2012
and the performance are relatively limited compared to recent
ones, thus demonstrate MIDAS’ overhead on various IoT
devices. The hardware usage is collected every five seconds
for a continuous period of five minutes after the system is
fully booted. To evaluate the overhead on the third condition
mentioned above, we also executed each benchmark sample

and measured the system hardware usage every five seconds
during five minutes. This five-minute time was chosen to
be consistent with RQ2 and the five-second interval avoids
bringing extra resource costs for too frequently sampling.

The average CPU and memory usage is presented in Fig-
ure 9. Results show that MIDAS brings minimal overhead to all
the tested devices. Take the ARM device as an example. The
overall CPU usage is 2.03% after the system is fully booted,
with 27.6 MiB of memory consumption. Whereas, after MI-
DAS is started, the CPU usage has only increased to 2.08%,
with additional 0.5 MiB of memory used by MIDAS. When
defending against malwares, MIDAS only brings additional
0.17% CPU and 0.6 MiB memory consumption.

Various mechanisms of MIDAS are dedicated to IoT devices
for reducing overhead. Specifically, (1) monitoring behaviors
based on triggered AVC messages avoids bringing significant
run-time costs, (2) the homology tracing applies a progressive
strategy, prioritizing more lightweight indicators against dis-
guise, and (3) to avoid heavy I/O costs, the half-byte CRC32
algorithm is used to calculate the hash based on already loaded
memory files. It takes only 64-bytes for look-up table, but
performs 3× faster than the bitwise version, achieving balance
between overhead and cryptographic accuracy.

D. Comparison with Related Studies

We further compare MIDAS’ defense effectiveness and
false positive issues with the IoT malware defense research
HADES-IoT [28] and the IoT malware detection framework
proposed by Li et al. [29]. HADES-IoT monitors process
spawning and stops processes outside the whitelist. To the
best of our knowledge, HADES-IoT is the only state-of-the-
art research that can achieve on-device IoT malware defense.
The framework of Li et al. uses graph neural network (GNN)
to detect IoT malwares through function call graphs. Since
it cannot directly run on resource-constrained IoT devices as
MIDAS and HADES-IoT do, we can only evaluate it on a
PC with 64 GiB of memory and an Intel i7-10700 processor.
Meanwhile, this framework only supports malware detection
without malware discovery and further defense (i.e. malware
constraining), thus we can only measure its detection rate
instead of defense rate. Results are presented in Table II.

For fair comparison, we examined the effectiveness of the
aforementioned works on the malware dataset proposed by
HADES-IoT. It can be seen that MIDAS successfully defended
against all the malware samples in the dataset and achieved
the same defense rate as HADES-IoT presented in its paper.
However, the framework of Li et al. only detected 77.78%

11

TABLE II: Comparison results of the defense effectiveness and
false positive rates between MIDAS, HADES-IoT and GNN-
based framework proposed by Li et al. [29].

Comparison Defense Rate False Positive Rate
Malware Dataset Application Dataset

MIDAS 100% 0%
HADES-IoT [28] 100% 44.23%
GNN [29] 77.78%∗ 28.85%
Note: ∗ represents the detection rate of the framework, since it can only achieve
malware detection without further defense (i.e., malware constrain).

of malwares in the dataset, where it misses the remaining
malwares that use obfuscation.

Also, we evaluated false positive rates on all the applications
embedded in the OpenWrt firmware. MIDAS reported no false
alarms toward these applications. On the contrary, HADES-
IoT uses a rigid whitelist comparison mechanism, which only
allows executions of processes in a fixed list collected in one
hour after boot. We follow the same procedure to collect the
allow list of HADES-IoT to estimate its false positive rate, and
found that 44.23% of the applications are blocked by HADES-
IoT. Such a rigid method causes high false positive issues, and
thus is unscalable and inapplicable for IoT devices in the real
world. The framework of Li et al. has 28.85% false positive
rate towards benign applications. We found that it misclassifies
some applications for essential system functionalities such
as procd. Since these applications involves much complex
call relations, they are likely to be falsely reported by the
framework based on function call graph features.

VI. DISCUSSION AND LIMITATION

Practicality on physical IoT devices. Low-end IoT devices
using proprietary operating systems, unlike those using Linux,
cannot be adapted to MIDAS. MIDAS is applicable for Linux-
based IoT devices with hardware resources beyond Class-
2, as defined in RFC7228 [30]. For these devices, adapting
MIDAS only requires minor modifications to the firmware. We
successfully tested MIDAS on devices like PSG1218, Redmi
AX6S and Xiaomi 4A, whose details are provided in the
supplementary materials1. MIDAS can bring the considerable
defense capabilities to these physical devices while occupying
less than 0.68% CPU and 1.86 MiB memory. Therefore
MIDAS is practical for real-world IoT device deployments.

(a) PSG1218 with Midas (b) Redmi AX6S with Midas

Fig. 10: Practicality of MIDAS on Physical Devices
Defense against adaptive attacker. MIDAS constitutes a

significant challenge for adaptive attackers to bypass because
of the behavior paradigm. Instead of relying on specific
patterns, MIDAS utilizes abstract representations of malware
behaviors. As long as the malware’s malicious intention re-
mains stable, the security sensitivity of the accessed resources
will remain relatively constant, thus the abstract behavior pairs

that correspond to the paradigm are unchanged. For extreme
cases where the paradigm is allegedly bypassed, the basic
integrity of the firmware still cannot be corrupted, because the
MD Policy is still enforced and essential resources, such as
u-boot partitions, are still protected. However, since MIDAS’
defense is based on the security mechanism provided by the
kernel, therefore, if the kernel itself is corrupted, attackers may
bypass MIDAS’ defense and compromise devices.

Generality of the defense. In IoT devices, only fixed
programs are used as entrances by malwares, such as uHTTPd
or Wget, but specific vulnerability exploitations are changing.
Based on this observation, MIDAS’ defense are designed to be
independent of specific vulnerabilities used by malwares, but
includes threats from attack entrances into the auditing scope.
In this way, even if malwares exploit zero-day vulnerabilities
for infection, MIDAS can still defend against these threats.

Time Delay of Behavior Auditing. Timely auditing mal-
wares’ behaviors is important for MIDAS to achieve effective
defense. Therefore, we further evaluated the delay between the
behavior conduct time of the program and the behavior audit
time of MIDAS. In our dataset, samples perform an average of
4 malicious operations per second. Under such circumstances,
the average time delay is only 0.04s. Additionally, a Tsunami
variant conducts the most frequent malicious behaviors in
our dataset, with 398 operations per second. In such worst
case scenario, MIDAS’ time delay is only 0.89s. This fully
demonstrates the low latency of MIDAS.

VII. RELATED WORK

Malwares on IoT devices. Many researchers have con-
ducted surveys on IoT malwares. For example, Alwari et al. [4]
investigated IoT malware lifecycle and point out that insuffi-
cient security mechanisms make IoT malwares a severe threat.
Antonakakis et al. [31] focused on the specific IoT malware,
Mirai and presented its evolution process. Studies like these
give us important lessons for extracting malware behaviors.
Differently from these prior works, we not only analyze IoT
malwares, but also propose a generic and lightweight safe-
guard framework equipped with abstract behavior paradigm
to defend against IoT malware attacks.

Malware Detection. Many studies focus on detecting
malwares on various platforms. Research like [6] [32] extracts
concrete features, like CFG, opcode or gray-scale image to
detect IoT malwares. Some research like [8] [33] designs anti-
malware framework for PC or mobile domains. Different from
MIDAS, studies like these cannot be applied to IoT devices for
malware defense due to the following reasons. Firstly, most
studies like [6] [32] focus on malware detection to separate
malwares from benign programs based on concrete features,
without on-device malware discovery and further resistance.
On the contrary, MIDAS can track the complete lifecycle
of IoT malwares from the intrusion to impact in the device
and achieves effective defense with the behavior paradigm. It
also blocks ongoing attacks and thus safeguards the firmware.
Secondly, many frameworks like [8] [33] are inapplicable due
to IoT devices’ limited hardware resources and heterogeneous
architectures. Methods like machine learning take up too much
storage and computational resources to be embedded in IoT

12

devices. Approaches such as traffic monitoring [34] needs to
be placed externally, suffering from inadequate dimensions for
malware analysis and device protection, like files or processes.
However, MIDAS can achieve lightweight on-device malware
defense on multiple aspects for heterogeneous IoT devices.

Malware Defense. Researchers have proposed various
methods to defend against malwares. For example, Flash-
Guard [35] is a firmware-level recovery system that can
defend against ransomware attacks on SSD. Zhang et al. [36]
proposed Scarecrow, a deception engine for environment
camouflaging to deactivate evasive malwares. However, these
methods are designed to defend against PC malwares, with
relatively high hardware requirements and lack of compatibil-
ity, which cannot be easily applied to heterogeneous resource-
constrained IoT devices. Recently, there are few studies
focusing on IoT malware defense. For example, HADES-
IoT [28] collects a fixed list of benign processes as whitelist to
conduct process comparison and denies execution of any other
program. Compared with MIDAS, such mechanism brings high
false alarm rate and hinders the scalability of IoT devices.

VIII. CONCLUSION

This paper presents MIDAS, an adaptive safeguard frame-
work for Linux-based IoT devices with heterogeneous archi-
tectures by real-time behavior auditing. Through sensitive be-
havior acquisition of 115,970 IoT malwares, we build a robust
and abstract hierarchical behavior paradigm to defend mutating
malwares in further behavior auditing. During auditing, MI-
DAS monitors behaviors of break-in programs with the built-
in MD policy, traces operations of homologous submodules
under disguises, and summarizes abstract behaviors to unveil
malware lifecycle and further constrain them. Our evaluation
shows that MIDAS can effectively safeguard IoT devices
when suffering from 971,951 real-world attacks. The number
of compromised incidents of devices with MIDAS decreases
343.1×, and the continuous operating time is 179.2× longer
than devices without MIDAS. Besides, MIDAS successfully
defends against up to 94.46% of the benchmark malwares with
less than 1.8MiB of memory and 0.54% CPU usage.

REFERENCES

[1] E. IoT, “Iot developer survey key findings,” https://iot.eclipse.org/comm
unity/resources/iot-surveys/assets/iot-developer-survey-2020.pdf, 2020.

[2] I. Security, “Ibm x-force threat management for iot,” https://www.ibm.
com/downloads/cas/GBPQEPY1, 2020.

[3] Qihoo, “Iot reaper: A rappid spreading new iot botnet,” https://blog.n
etlab.360.com/iot reaper-a-rappid-spreading-new-iot-botnet-en/.

[4] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Snow, F. Monrose, and
M. Antonakakis, “The circle of life: A Large-Scale study of the IoT
malware lifecycle,” in USENIX Security 21, 2021, pp. 3505–3522.

[5] “A survey of iot malware and detection methods based on static
features,” ICT Express, vol. 6, no. 4, pp. 280–286, 2020.

[6] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and
K. Sakurai, “Lightweight classification of iot malware based on image
recognition,” in COMPSAC 2018, vol. 02, 2018, pp. 664–669.

[7] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: Evaluating android
anti-malware against transformation attacks,” ser. ASIA CCS ’13. New
York, NY, USA: ACM, 2013, p. 329–334.

[8] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS
and dalvik semantic views for dynamic android malware analysis,” in
USENIX Security 12. USENIX Association, Aug. 2012, pp. 569–584.

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in OSDI 2010),
Vancouver, BC, 2010.

[10] VirusTotal, 2021. [Online]. Available: https://www.virustotal.com/
[11] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and

C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in WOOT
15, Washington, D.C., 2015.

[12] Vx-underground, “vx-underground,” 2021. [Online]. Available: https:
//www.vx-underground.org/

[13] ArditDulemata, “ArditDulemata/Curated-Malware-Database,” 2020.
[Online]. Available: https://github.com/ArditDulemata/Curated-Mal
ware-Database

[14] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool
for massive malware labeling,” in RAID 2016, Paris, France, September
19-21, 2016, Proceedings, ser. Lecture Notes in Computer Science,
F. Monrose, M. Dacier, G. Blanc, and J. Garcı́a-Alfaro, Eds., vol. 9854.
Springer, 2016, pp. 230–253.

[15] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing linux malware,” in 2018 IEEE Symposium on Security and Privacy
(SP), 2018, pp. 161–175.

[16] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning
and classification of malware behavior,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, D. Zamboni, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 108–125.

[17] Defensec, “dssp SELinux Policy,” 2021. [Online]. Available:
https://git.defensec.nl/

[18] J. Security, “Automated malware analysis - joe sandbox cloud basic,”
https://www.joesandbox.com/#linux, 2021.

[19] T. M. Corporation, “Tactics - enterprise — mitre att&ck®,” https://atta
ck.mitre.org/tactics/enterprise/, 2013.

[20] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and philosophy,”
Technical report, 2018.

[21] S. Project, “Nb domain and object transitions - selinux wiki,” https:
//selinuxproject.org/page/NB Domain and Object Transitions, 2015.

[22] P. Corporation, H. Y. Lin, and Y. Osawa, “Understanding the iot threat
landscape and a home appliance manufacturer’s approach to counter
threats to iot,” 2019.

[23] The OpenWrt Project, “OpenWrt - Supported devices,” 2021. [Online].
Available: https://openwrt.org/supported devices

[24] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on linux-based iot devices with
honeycloud.” New York, NY, USA: ACM, 2019.

[25] S. Sundaresan, S. Burnett, N. Feamster, and W. de Donato, “BISmark:
A testbed for deploying measurements and applications in broadband
access networks,” in USENIX ATC, 2014, pp. 383–394.

[26] D. Moore, C. Shannon, G. M. Voelker, S. Savage et al., Network
telescopes: Technical report. Department of Computer Science and
Engineering, University of California . . . , 2004.

[27] T. Seals, “Mozi botnet accounts for majority of iot traffic — threatpost,”
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337/, 2020.

[28] D. Breitenbacher, I. Homoliak, Y. L. Aung, N. O. Tippenhauer, and
Y. Elovici, “Hades-iot: A practical host-based anomaly detection system
for iot devices.” New York, NY, USA: ACM, 2019.

[29] C. Li, G. Shen, and W. Sun, “Cross-architecture internet-of-things
malware detection based on graph neural network,” in 2021 International
Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–7.

[30] C. Bormann, M. Ersue, and A. Keränen, “Terminology for Constrained-
Node Networks,” RFC 7228, May 2014.

[31] M. Antonakakis, T. April, M. Bailey, and M. B. et al., “Understand-
ing the mirai botnet,” in 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, 2017, pp. 1093–1110.

[32] M. Alhanahnah, Q. Lin, Q. Yan, N. Zhang, and Z. Chen, “Efficient
signature generation for classifying cross-architecture iot malware,” in
CNS 2018, 2018, pp. 1–9.

[33] Z. Zhu and T. Dumitraş, “Featuresmith: Automatically engineering
features for malware detection by mining the security literature.” New
York, NY, USA: ACM, 2016.

[34] K. Bartos, M. Sofka, and V. Franc, “Optimized invariant representation
of network traffic for detecting unseen malware variants,” in 25th
USENIX Security Symposium (USENIX Security 16), Austin, TX, 2016,
pp. 807–822.

[35] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “Flashguard:
Leveraging intrinsic flash properties to defend against encryption ran-
somware,” ser. CCS ’17. ACM, 2017, p. 2231–2244.

[36] J. Zhang, Z. Gu, J. Jang, D. Kirat, M. Stoecklin, X. Shu, and H. Huang,
“Scarecrow: Deactivating evasive malware via its own evasive logic,” in
DSN 2020, 2020, pp. 76–87.

https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://www.ibm.com/downloads/cas/GBPQEPY1
https://www.ibm.com/downloads/cas/GBPQEPY1
https://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
https://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
https://www.virustotal.com/
https://www.vx-underground.org/
https://www.vx-underground.org/
https://github.com/ArditDulemata/Curated-Malware-Database
https://github.com/ArditDulemata/Curated-Malware-Database
https://git.defensec.nl/
https://git.defensec.nl/
https://www.joesandbox.com/#linux
https://www.joesandbox.com/#linux
https://attack.mitre.org/tactics/enterprise/
https://attack.mitre.org/tactics/enterprise/
https://selinuxproject.org/page/NB_Domain_and_Object_Transitions
https://selinuxproject.org/page/NB_Domain_and_Object_Transitions
https://openwrt.org/supported_devices
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337/

	Introduction
	Background
	Midas Design
	Behavioral Characteristic Extraction
	Behavior Abstraction
	Behavior Intention Analysis

	Real-Time Behavior Auditing

	Implementation
	Evaluation
	Performance in Real-World Scenarios
	Effectiveness on Benchmark Malwares
	Overhead of Midas
	Comparison with Related Studies

	Discussion and Limitation
	Related Work
	Conclusion
	References

